\(\int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [595]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 533 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} (4 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (4 A b+(a+2 b) B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d} \]

[Out]

1/2*B*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+1/4*(4*A*b+B*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)*s
ec(d*x+c)^(1/2)/b/d-1/4*(a-b)*(4*A*b+B*a)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(
1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b)
)^(1/2)/a/b/d/sec(d*x+c)^(1/2)+1/4*(4*A*b+(a+2*b)*B)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/c
os(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*
x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)-1/4*(4*A*a*b-B*a^2+4*B*b^2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/
2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(
a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 1.74 (sec) , antiderivative size = 533, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3040, 3082, 3140, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (B (a+2 b)+4 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b d \sqrt {\sec (c+d x)}}-\frac {(a-b) \sqrt {a+b} (a B+4 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 a b d \sqrt {\sec (c+d x)}}+\frac {(a B+4 A b) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{4 b d}+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

-1/4*((a - b)*Sqrt[a + b]*(4*A*b + a*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*
x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + S
ec[c + d*x]))/(a - b)])/(a*b*d*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b]*(4*A*b + (a + 2*b)*B)*Sqrt[Cos[c + d*x]]*Csc
[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqr
t[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(4*b*d*Sqrt[Sec[c + d*x]]) - (Sqrt[a +
 b]*(4*a*A*b - a^2*B + 4*b^2*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c
+ d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1
 + Sec[c + d*x]))/(a - b)])/(4*b^2*d*Sqrt[Sec[c + d*x]]) + (B*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d*Sqrt
[Sec[c + d*x]]) + ((4*A*b + a*B)*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*b*d)

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3082

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(
f*(2*n + 3))), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a + b*Sin[e + f*x]])*Simp[a*A*c*(
2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n
+ 3) + B*(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3140

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[1/(2*d), Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Si
n[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx \\ & = \frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {1}{4} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a B+2 (2 a A+b B) \cos (c+d x)+(4 A b+a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-a (4 A b+a B)+2 a b B \cos (c+d x)+\left (4 a A b-a^2 B+4 b^2 B\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b} \\ & = \frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-a (4 A b+a B)+2 a b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}+\frac {\left (\left (4 a A b-a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 b} \\ & = -\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}-\frac {\left (a (4 A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}+\frac {\left (a (4 A b+(a+2 b) B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{8 b} \\ & = -\frac {(a-b) \sqrt {a+b} (4 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (4 A b+(a+2 b) B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(1121\) vs. \(2(533)=1066\).

Time = 16.84 (sec) , antiderivative size = 1121, normalized size of antiderivative = 2.10 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (2 (c+d x))}{4 d}+\frac {\sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (4 a A b \tan \left (\frac {1}{2} (c+d x)\right )+4 A b^2 \tan \left (\frac {1}{2} (c+d x)\right )+a^2 B \tan \left (\frac {1}{2} (c+d x)\right )+a b B \tan \left (\frac {1}{2} (c+d x)\right )-8 A b^2 \tan ^3\left (\frac {1}{2} (c+d x)\right )-2 a b B \tan ^3\left (\frac {1}{2} (c+d x)\right )-4 a A b \tan ^5\left (\frac {1}{2} (c+d x)\right )+4 A b^2 \tan ^5\left (\frac {1}{2} (c+d x)\right )-a^2 B \tan ^5\left (\frac {1}{2} (c+d x)\right )+a b B \tan ^5\left (\frac {1}{2} (c+d x)\right )+8 a A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 a^2 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+8 b^2 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+8 a A b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 a^2 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+8 b^2 B \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(a+b) (4 A b+a B) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 b (4 a A-a B+2 b B) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{4 b d \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b+a \tan ^2\left (\frac {1}{2} (c+d x)\right )-b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}} \]

[In]

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(B*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + (Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*
(4*a*A*b*Tan[(c + d*x)/2] + 4*A*b^2*Tan[(c + d*x)/2] + a^2*B*Tan[(c + d*x)/2] + a*b*B*Tan[(c + d*x)/2] - 8*A*b
^2*Tan[(c + d*x)/2]^3 - 2*a*b*B*Tan[(c + d*x)/2]^3 - 4*a*A*b*Tan[(c + d*x)/2]^5 + 4*A*b^2*Tan[(c + d*x)/2]^5 -
 a^2*B*Tan[(c + d*x)/2]^5 + a*b*B*Tan[(c + d*x)/2]^5 + 8*a*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a +
b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] -
 2*a^2*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b +
 a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*b^2*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a
+ b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)]
 + 8*a*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x
)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a^2*B*EllipticPi[-1, ArcSin[Ta
n[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*
x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*b^2*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*
Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a
+ b)] + (a + b)*(4*A*b + a*B)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^
2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*b*(4*a*A -
 a*B + 2*b*B)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c +
 d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)]))/(4*b*d*(1 + Tan[(c + d*x)/2]
^2)^(3/2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2727\) vs. \(2(479)=958\).

Time = 14.56 (sec) , antiderivative size = 2728, normalized size of antiderivative = 5.12

method result size
parts \(\text {Expression too large to display}\) \(2728\)
default \(\text {Expression too large to display}\) \(2750\)

[In]

int((A+B*cos(d*x+c))*(a+cos(d*x+c)*b)^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

A/d/(1+cos(d*x+c))/sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(1/2)*(2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(
1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*cos(d*x+c)-EllipticE(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/
(a+b))^(1/2)*a*cos(d*x+c)-EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b*cos(d*x+c)-2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(
a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*cos(d*x+c)+4*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos
(d*x+c))/(a+b))^(1/2)*a-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/
2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a-2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-c
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b-4*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*
a+2*sec(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos
(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a-sec(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc
(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a-sec(d*x+c)*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/
2)*b-2*sec(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*
((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a+sin(d*x+c)*cos(d*x+c)*b+a*sin(d*x+c))-1/4*B/d/(1+cos(d*x+c))/s
ec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(1/2)*(2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)
*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)-4*EllipticF(cot(d*x+c)-csc(d*
x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2
*cos(d*x+c)-2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b)
)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*cos(d*x+c)+8*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^
(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)+Elliptic
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*a^2*cos(d*x+c)+EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(
d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)+4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b-8*((a+cos(
d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*b^2-4*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2+16*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2+2*((a+cos(d*x+c)*b)/(
1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*a^2+2*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b-2*b^2*cos(d*x+c)^2*sin(d*x+c)+2*sec(d*x+c)*EllipticF(cot(d*x+c)-csc(d*x
+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b-
4*sec(d*x+c)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2-2*sec(d*x+c)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2)
)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2+8*sec(d*x+c)*EllipticPi(
cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*b^2+sec(d*x+c)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos
(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2+sec(d*x+c)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)
/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b-3*a*b*cos(d
*x+c)*sin(d*x+c)-2*cos(d*x+c)*b^2*sin(d*x+c)-a^2*sin(d*x+c)-2*a*b*sin(d*x+c))/b

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))*(a+b*cos(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))/sqrt(sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/2), x)